Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors
نویسندگان
چکیده
منابع مشابه
Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased e...
متن کاملLabel-free DNA biosensors based on functionalized carbon nanotube field effect transistors.
A carbon nanotube transistor array was used to detect DNA hybridization. A new approach to ensure specific adsorption of DNA to the nanotubes was developed. The polymer poly (methylmethacrylate(0.6)-co-poly(ethyleneglycol)methacrylate(0.15)-co-N-succinimidyl methacrylate(0.25)) was synthesized and bonded noncovalently to the nanotube. Aminated single-strand DNA was then attached covalently to t...
متن کاملHigh-sensitive Label-free Biosensors Based on Carbon Nanotube Field-effect Transistors Modified with Aptamers
We have fabricated label-free protein biosensors based on aptamer-modified carbon nanotube field-effect transistors (CNTFETs) to detect immunoglobulin E (IgE). Since aptamers are artificial oligonucleotides, the aptamers are smaller in size than the Debye length. Therefore, the biosensors are expected to detect IgE with high sensitivity. After the 5’amino modified aptamers were covalently immob...
متن کاملLabel-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker
We report on the development of label-free chemical vapour deposition (CVD) graphene field effect transistor (GFET) immunosensors for the sensitive detection of Human Chorionic Gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFET sensors were fabricated on Si/SiO₂ substrate using photolithography with evaporated chromium and sputtered gold contacts. GFET channels were ...
متن کاملLabel-free sub-picomolar protein detection with field-effect transistors.
Proteins mediate the bulk of biological activity and are powerfully assayed in the diagnosis of diseases. Protein detection relies largely on antibodies, which have significant technical limitations especially when immobilized on two-dimensional surfaces. Here, we report the integration of peptide aptamers with extended gate metal-oxide-semiconductor field-effect transistors (MOSFETs) to achiev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2010
ISSN: 1424-8220
DOI: 10.3390/s100505133